
Constructive Algorithms 

If the objective function to be minimized is locally regular or locally concave, 
the relaxation of the resource constraints does not yicld a tractable problem 
in gcncral. Thus, the relaxation-based approach from Chapter 3 no longcr 
proves useful. For solving resource allocation problems with locally regular 
or locally concave objective function f ,  we havc to explicitly construct the 
schedules from an appropriate set that contains an optimal schedule if the 
problem is solvable. We refer to algorithms that proceed in such a way as 
constructzve algorzthrns. The serial schedule-gencration scheme for minimiz- 
ing rcgular objcctivc functions is an cxample of a constructive algorithm. In 
this chaptcr we develop constructivc algorithms that are based on the second 
basic rcprcscntation of the sct S of all feasible schedules as a union of disjoint 
equal-preorder sets (recall that the term equal-preordcr sct may also desig- 
nate an equal-order set). As we have seen in Subsections 2.1.1 and 2.1.2, the 
set of all minimal points or vertices of equal-prcorder sets coincides with the 
set of all minimal points or vcrticcs, respectively, of schedule polytopes. In 
Subscction 2.2.2 we havc introduccd thc notion of quasiactive and quasistable 
schcdules dcsignating thosc feasiblc schcdules which represent minimal points 
or vertices, respectively, of their schedule polytopcs. The analysis in Subsec- 
tion 2.3.2 has shown that for S # 0, the set of all quasiactive schcdules always 
contains somc optirnal schedule if the objectivc function f under study is lo- 
cally regular. Likewisc, thc sct of all quasistable schedules always contains an 
optimal schedule if f is locally concave provided that S # 0. 

Since we again consider the general case where both renewable and cumu- 
lative resources are present, we considcr rclations p in set V of all (real and 
fictitious) activitics. Under our assumption that the real activities use the re- 
ricwablc rcsources and that the events deplete arid rcplenish the cumulative 
resources, precedence relationships need only be defined among rcal activi- 
ties and among events of thc project. Morc formally, instead of considering 
schedule-induccd prcorders O(S) = { ( i ,  j) E V x V I S, 2 S, + p,) in set V ,  
wc may restrict ourselves to schedule-induced relations arising from the union 
of the respective schedule-induced strict order in set V a  and the correspond- 
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ing rcflexive preorder in set Ve. Since the ground sets Va and V e  of those 
two preorders arc disjoint, thc union of both prcorders is again transitive and 
thus represents a prcordcr in ground sct V = Vu U V". Accordingly, for given 
schedule S we define the schedule-induced preorder to be 

O(S) := {(i, j) E (Va x Vn) U (V" x Ve) I Sj > S, + Pi) 

We notice that preorder B(S) is neither irreflexive nor reflexive. 
Now recall that any quasiactivc schcdulc can bc rcprcscntcd as a spanning 

outtree G = (V, EG) of its schcdulc network N(B(S)) rootcd at nodc 0, where 
each arc (i, j )  of G belongs to one temporal constraint Sj - Si 2 or one 
precedence constraint Sj 2 Si +pi  that is active a t  S (cf. Proposition 2.28). 
Similarly, any quasistable schedule can be assigned to a spanning trcc G of 

its schedule network. In addition, wc assign the weights 6 e  := d:jS) to the 
arcs (i, j )  E EG. The active temporal arid precedence constraints can thcn be 
written in the form 

S j - S i > d g  ( ( i , j ) ~ E c )  

Thc constructivc algorithms are based on generating such spanning outtrccs 
and spanning trees G. The corresponding schedule S is obtained from G by 
computing thc unique solution to the system of linear equations So = 0 and 
Sj = Si+6$ ((i ,  j) E EG), which can be achieved in linear time. By construct- 
ing a spanning outtree or spanning tree G we perforrn two consecutive tasks 
simultaneously: first, finding a feasible schedule-induced prcordcr in set V 
and sccond, computing some appropriate vertex (thc minimal point if G is an 
outtree) of the corresponding relation polytope. 

Rcsource allocation problems with locally regular or locally concave ob- 
jective functions, regardless of containing explicit resource constraints or 
not, are much harder to solvc to optimality on the average than resource- 
constrained project schcdulirig problems whcrc somc rcgular or convexifiable 
objective function is to be minimized. That is why in thc present chapter 
we are concerned with heuristic procedures. In Section 4.1 we first discuss 
a generic schedule-generation scheme producing one quasiactive or one qua- 
sistable schedule. This schedulc-gcncration schcme has bcen proposed by Neu- 
mann et al. (2000) and goes back to priority-rule heuristics for resource level- 
ling problerns that have been devised by Neumann and Zimmermann (19996, 
2000). The schedule-generation schcme provides an initial quasiactive or qua- 
sistablc schcdule, from which we may subsequently move stepwise towards dif- 
ferent quasiactive or quasistablc schedules by using an itcrativc improvcment 
proccdurc. In Section 4.2 we then deal with tree-based neighborhood functions 
presented in Ncumann ct al. (2003a). Neighborhood functions constitute the 
essential building block of local search algorithms such as hill climbing, tabu 
search, simulated annealing, or threshold accepting (for an overview of differ- 
cnt local search techniques, see Aarts and Lenstra 2003b). In particular, we 
show that the proposed neighborhoods allow local scarch algorithms to reach 
optimal schedules independently of the initial schedule chosen. Section 4.3 is 
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devotcd to additional notes on alternative solution procedures and an exper- 
imental performance analysis of the methods discussed. 

4.1 Schedule-Generat ion Scheme 

The schedule-generation scheme for constructing quasistable schedules ex- 
pands the node set C of a subtree G of some schedule network by one node j 
in each itcration until C = V. The algorithm starts with C = (0) and itera- 
tively links the activities j E V \ C not yet scheduled with activities i E C. 
In this way, the start times Si of all activities i E C are fixed. They are 
uniquely determined by the recursion So = 0 and Si = Sh + 6 g  if (h, i )  E EG 
or Si = St, - 6% if (i, h) E EG (i E C, i # O),  where h is the predecessor 
of node i on the (undirected) path from node 0 to node i in G. For a given 
pair ( i ,  j )  with i E C, j E V \ C ,  there are four alternatives of connecting 
nodes i arid j. First, we may either introduce a forward arc (i, j )  or a back- 
ward arc (j, i). Now assume that we have chosen forward arc ( i , j ) .  Then ( i , j )  
may be weighted by 6g = 6ij if ( i , j )  is contained in project network N or 
weighted by 62 = pi if dij < pi. In the first case, we speak of a temporal arc, 
and in the second case, the arc is referred to as a precedence arc. Likewise, 
backward arc ( j ,  i )  may be weighted by 65  = Sji or by 6g = pj. If i and j 
are events, then Si +pi = Si - p j  = Si and thus the backward prcccdence arc 
may be omitted. The arcs have to be chosen in accordance with the tcmporal 
constraints. Let 

ES? := max[ESj, ?ax(Si + dij)] and L S ~  := min[LS,, - dji)] 
ZEC ZEC 

denote the earliest arid latest start times of activity j given that activities 
i E C start at times Si. Thc schedule S generated is time-fcasiblc precisely if 
at any itcration it holds that ESF < S, + 6g 5 LSf if a forward arc (i, j )  is 
selected and ESf < Si - 6; < LSF if a backward arc (j, i )  is chosen. 

Froni the viewpoint of implementation, it is expedient to allow the sched- 
uling of activities j a t  their earliest or latcst start times E S ~  or LSf even if 
the corresponding tcmporal arc connects activity j with an activity i that is 
not scheduled either. We then need not check whether or not activity j can 
already be linked to some activity i E C,  while the set of schedules which 
can be generated is not affected by this modification. The reason for this is 
that the same tree G could have been constructed by the original method just 
by processing the activities j in a different order. Figuratively speaking, the 
modification means that the directed graph G whose node set C is iteratively 
expanded may now be unconnected unless C = V. Nevertheless, the property 
that the start times of all scheduled activities i E C are known as soon as 
they arc added to G is preserved. 

Algorithm 4.1 shows an implementation of the procedure for the case wherc 
the availability of tile resources is not limited, i.e., Rk: = cc for all Ic E RP and 
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- 
Rk = -co, Rk = for all k E RY. As we have mentioned in Subsection 2.3.2, - 

this assumption is generally met in practice when dealing with rcsourcc level- 
ling problems, where only renewable resources are taken into account and the 
resource capacities may be chosen according to the respective requirements. 
How to modify the schedule-generation scheme in the presence of resource 
constraints will be explained below. For simplicity, we assume that ST # 0. 
Aftcr the computation of the earliest and latest schedules ES and LS, at each 
iteration some activity j E V \ C not yet scheduled is selected. Then, the de- 
cision set Dj  of tentative start times t for j is determined. The conditions on 
start times t ensure that the resulting schedule S is (time-)feasible and that 
precedence relationships arc only established between activities of the same 
type (i.e., among real activities and among events; recall our discussion about 
the proper definition of schcdule-induced prcorder B(S)). Finally, some t E Dj 
is selected to be the start time of j and the time windows [EStL, LSh] for the 
activities h E V \ C arc updated. These steps are reiterated until all activities 
have been scheduletl. The resulting tree G is a spaririirig tree of all relation 
networks N(p) for which p contains the precedence arcs added and thus in 
particular a spanning tree of schedule network N(Q(S)).  The time complexity 
of Algorithm 4.1 equals O(mn),  which is the time required for calculating the 
initial earliest and latest schedules. 

Algorithm 4.1. Schedule-generation scheme for locally concave objective furictioris 

Input: A project without resource constraints. 
Output: A quasistable schedule S .  

initialize set of scheduled activities C := (0) and set So := 0; 
corrlpute earliest and latest schedules ES and LS; 
while C f V do (* not all activities j E V scheduled *) 

select an activity j E V \ C; 
if j E V" then put V' := Va; else put V' := Ve; 
add j to C and set Dj  := {ES,, LS,}; 
for all i E V' n C with ES, < Si + p, < LS, do add S, + p, to Dj; 

8: if V' = V" then 
9: for all i 6 V' f' C with ESj  < Si - pj  < LSj do add S, - pj  to Dj; 

10: select some time t E D, and set S, := t ;  (*schedule j at time t *) 
for all h E V \ C do (* update earliest and latest start times *) 

set ES,, := max(ES~,, S, + d,,,) and LSl, := min(LSh, S, - dhj); 
return S;  

The following proposition (cf. Neumanri et al. 2000) establishes the com- 
pleteness of the schedulc-generation scheme. This means that, at  least in thc- 
ory, a rcsourcc allocation problem with locally concave objective function can 
be solved by a brute-force algorithm branching over the activity j E V \ C to 
be scheduled next and the tentative start time t E Dj chosen. 
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Proposition 4.1 (Neumann et al. 2000). 

(a) Any schedule S generated by using Algorithm 4.1 is quasistable. 
(b) Any quasistable schedule S E QSS can be generated by using Algo- 

rithm 4.1. 

Proof. 

(a) Since the earliest and latest start times are updated in the course of the al- 
gorithm, schcdule S is (time-)feasible if at each iteration Vj [ES,, LSj]. 
It follows from the definition of decision set 'Dj that we only necd to  show 
that ESj < LSj. Now assumc that we have schcdulcd somc activity j' 
and before the update of the earliest and latest start times it holds that 
ES,, < LSh for all h E V \ C. Then Sjl 5 LSj, 5 LSt, - djtt, and 
Sj, > ES,, > ESh+dhj, for all h E V \ C  and in particular S3,+djrj < LSj 
and Sj, - djj, > ES,. Conscqucntly, ES, > LSj aftcr thc update would 
imply Sj, +djrj > Sj, -djj,, i.c., djjj +djj, > 0, which contradicts ST # 0. 
Thus, S is feasible. The quasistableness of S now follows from Proposi- 
tion 2.28b. 

(b) We consider some quasistablc schcdulc S and show how to gcncratc 
S by using Algorithm 4.1. Let G be a spanning tree of schedule net- 
work N(O(S)). The existence of such a spanning tree is guaranteed by 
Proposition 2.2813. Since G is a trcc and thc procedure starts with C = {O), 
at  cach iteration there is some activity j E V \ C whose predecessor i on 
thc path from node 0 to node j in G has already been scheduled. We may 
then conncct j with i by selecting t = Si + 6; E Vj if Sj = S, + dG and 

23 

t = Si - 6$ E D j ,  othcrwisc. Thus, whcn C = V, the schedulc gcncratcd 
coincides with schedule S .  0 

Now recall that any quasiactive schedule S can be associated with a span- 
ning outtrcc G of its schedule network N(0(S)) with root node 0. Such a 
spanning outtree is obtained if each activity J to be schcdulcd is linkcd with 
somc activity z E C by a forward arc ( 2 , ~ ) .  Accordingly, a schcdulc-generation 
scheme for quasiactive schedules is readily obtained from Algorithm 4.1 by 
initializing dccision set V3 with {ES,} instcad of {ES,, LS,} and dclcting 
lines 8 and 9. The statemcnts of Proposition 4.1 with "quasistable" and QSS 
replaced by LLquasiactive" and QS1S immcdiately carry over to  this modifica- 
tion of Algorithm 4.1. 

For what follows, we drop our assumption of infinite renewable-resource 
capacities. To take account of renewable-resource constraints, in line 10 of Al- 
gorithm 4.1 we only sclcct feaszble start tzmes t from decision set DJ such that 
the residual resource capacities sufficc to cxccute activity J in time interval 
[t, t + PJ [, i.c.7 
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Of coursc, inequality (4.1) only necds to be evaluated for real activitics 
j E Va. By using a support-point rcprcsentation of the resource demand over 
time that results from the real activities i E CnVa scheduled, testing (4.1) for 
givcn t E Dj  takes C?(IRPln) tinlc. If tinies t in decision set D j  are iteratcd in 
increasing order, the amortizcd time complcxity for eliminating all infeasible 
start t in~cs  from 'Dj is C?(nlogn + IRYn). By keeping a sortcd list of all start 
and completion times of schedulcd activitics i E C n Va, the amortized time 
complexity for checking (4.1) is decreased to  O(IRPln) per iteration. Thus, 
the time complexity of Algorithm 4.1 including the test of inequality (4.1) is 
O(mn + IRpln2). 

It may happen that no tentative start time t E Dj  is resource-feasible, 
which means that the current purtial schedule (Si)itc cannot be extended to  a 
fcasiblc scllcdule S E S. In that casc, cither the schedule generation is stopped 
or an unschcduling stcp is pcrformcd. Diffcrcnt unscheduling techniques arc 
known from literature. The method by Franck (1999), Ch. 4, tailored to the 
case of regular objective functions, has been skctchcd in Subsection 3.1.4. Fur- 
ther unscheduling procedures have been devised by Ncumann and Zimmer- 
mann (1999b, 2000) (see also Zirnmermann 2001a, Scct. 3.2, and Neumann 
et al. 20030, Scct. 3.7), whcrc thosc activities i E C are unscheduled whose 
start a t  a different time frees capacity for processing activity j. Alternatively, 
onc may also gencrate a time-feasible schcdule S using Algorithm 4.1 first 
and then resolve resource conflicts by left- or right-shifting certain activitics. 
This approach corresponds to schedule-repair methods described by Neumann 
arid Zimmermann (2000). Wc finally noticc that the proof of Proposition 4.1 
remains valid for the case of renewable-resource constraints, which mcans that 
even without unscheduling, any quasistablc schedulc may still be generated 
using Algorithm 4.1 with rcduced decision scts Dj .  

For certain choices of tentative start times t E Dj  one obtains specific types 
of schedules. If a t  cach iteration wc select t = min 'Dj and no unscheduling stcp 
is performed, thc resulting schcdule is active because each activity is schedulcd 
at  its earliest feasible start time. Likewise, by always choosing t = minDj or 
t = maxDj wc obtain a stable schcdule. The following example, however, 
shows that duc to the prescnce of rnaximum time lags, not all active or stable 
schedules can be generated in this way. 

Example 4.2. We consider a project with one renewable resource of capacity 
R = 1 and four real activities i = 1,2 ,3 ,4  with durations pi = 1 and resource 
requirements ri = 1 (i = 1,. . . ,4) .  Tlic project network N is depicted in 
Figure 4.la. Clearly, there is precisely one feasible schedule S = (0 ,1 ,2 ,3,4,5) ,  
which, as a consequence, is active and stable. Schedule S is illustrated by 
the Gantt chart shown in Figure 4.lb, where cach rcal activity i E V a  is 
represented as a box of Icngth pi and hcight r i  over the time axis froin Si 
to  C,. 

The start times of activities 0, 1, 4, and 5 are fixed by the prescribed time 
lags because the corresponding nodes form a cycle of length zero in N. If in 
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Fig. 4 .1 . Incompleteness of schedule-generation scheme for active or stable sched­
ules: (a) project network N; (b) Gantt chart for unique feasible schedule S 

the course of the algorithm, activity 2 is scheduled before activity 3, we obtain 
minD2 = 0 and maxD2 > 3. Symmetrically, if activity 3 is scheduled before 
activity 2, we have minPs < 2 and maxPs = 5. Hence, the unique feasible 
schedule S cannot be generated if solely scheduling at earliest or latest feasible 
start times is considered. 

We obtain the schedule-generation scheme of the priority-rule methods 
for resource levelling proposed by Neumann and Zimmermann (19996, 2000) 
if start time t G Vj is always chosen to be the greatest minimizer of an 
additional-cost function f^ on Vj^ i.e., t = maxargmin^/^-p //('^O- ^^^ given 
t' G Vj, //(^O is the increase in the objective function value if activity j is 
scheduled at time t' given partial schedule {Si)i^c^ where we put rhk := 0 for 
all activities h eV\C not yet scheduled and all k G 7^^. Similarly to Exam­
ple 4.2 it can be shown that the restriction to locally optimal tentative start 
times t G argmin^/^-p./J(^') generally impUes that the schedule-generation 
scheme is no longer complete, which means that one may miss the optimum 
even if all sequences in which activities j are scheduled are enumerated. 

In the case where the availability of cumulative resources is limited as 
well, the feasibility of the generated schedule can no longer be ensured by 
iterating partial schedules which observe the resource constraints. The reason 
for this is that a partial schedule leading to a shortage or a surplus in some 
cumulative resource may be extended to a feasible schedule. Nevertheless, 
we may still exclude certain tentative start times from further consideration 
by computing, for given partial schedule, lower and upper bounds on the 
inventory in cumulative resources. 

Let {Si)i^c be the partial schedule under consideration and assume that 
we want to test whether event j G V^\C can be scheduled at time Sj = t E Vj. 
By D' we denote the distance matrix for the expanded project network N' 
where for each /i G C U {jf} we add the two arcs (0, h) and (/i, 0) weighted by 
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= S,, and bhO = -Sh to project network N.  The set S& C_ ST of all time- 
feasible schedules belonging to project network N1 coincides with the set of all 
schedules that can bc obtained by extending (Sh)hECUI,) to a time-feasiblc 
schedule. If for all schedules S E S!,, the invcntory lcvcl a t  time S, either falls 
below the safcty stock or exceeds the storage capacity, i.e., 

r k ( S ,  Sj) < Rk or rk(S, Sj)  > Rlc for some Ic E RY (4.2) 

then cvcnt j cannot be scheduled at timc t = Sj bccause S& n S = 0. In 
this case, tentative start time t can be deleted from decision set Dj. (4.2) 
holds true for any schcdule S E S& precisely if for some cumulative resource 
Ic E R P ,  the niaximum inventory maxsEsk rk(S,  Sj) at time Sj is less than 
safcty stock Rk or the minimum invcntory minsEsk rk(S, Sj) at timc Sj ex- 
cceds storage capacity &. The problcms of computing the maximum and 
minimum invcntories have been addressed in Subsection 2.1.2, where we have 
been concerned with checking thc fcasibility of a given relation p in sct V". 
In the latter context, we have shown that maximizing or minimizing rk(., Sj) 
on a rclation polytope ST(p) can be stated as a binary program with totally 
urlinlodular coefficicnt matrix, the dual of whose contir~uous relaxation is a 
minimum-flow problem (sce (2.2) and (2.4)). Wc obtain analogous formula- 
tions of our present problems if we choose reflexive preorder 8 in (2.2) to 
be the preorder 8 = O(D1) induced by distance matrix Dl. Since solving a 
minimum-flow probleni takes 0 ( n 3 )  time, thc computational effort for testing 
thc feasibility of a tentative start time t E D, is O ( 1 R ~ l n ~ ) .  Hence, the time 
complexity of the variant of Algorithm 4.1 coping with renewable-resource 
and cumulative-resource constraints is 0(IR"ln2 + IRYln5). 

Alternativcly, rcsource constraints can be taken into account by combining 
thc relaxation-based and constructive approaches into a two-phase method. In 
phase 1, we determine a feasible relation Q in set V. In phase 2, we generate 
a vertex of relation polytope ST(@) C S (i.e., a quasistable schedulc) by using 
a variant of Algorithm 4.1 where the original projcct network N is rcplaccd 
with relation network N(Q). A feasible relation Q in set V can be generated 
using a modification of the enumeration scheme given by Algorithm 3.3. In 
the modified version, forbidden sets F are given by antichains U and unions 
of prcdecessor sets U in prcordcrs 8 = O(D(p)) rather than by active sets 
A(S, t)  for minimizers S on relation polytopes ST(p). For given relation p, 
those sets U can bc determined by solving the minimum-flow problems dis- 
cussed in Subscctions 2.1.1 and 2.1.2 for the restrictions of p to sets Vu and V", 
respcctively. The solutions to thc dual problems, i.e., the rnaxiniurri (s, t)-cuts 
iii the respective flow networks, then provide the activity sets U sought (for 
details wc rcfcr to Section 5.2, wherc wc shall use a similar technique for corn- 
puting forbidden active scts when sequence-dependent changeover times arise 
between the cxccution of activities that are executed at different locations). If 
no set U is forbidden any longer, we have obtained a feasible relation Q = p. 
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4.2 Local Search 

The schedule constructcd by using thc schedule-generation scheme may bc im- 
proved by performing a local search in the set &AS of all quasiactive schedules 
if objective function f is locally regular or in the set QSS of all quasistable 
schedules if f is locally concave. Starting with some initial solution, local 
search algorithms try to find better solutions by exploring ncighborhoods (cf. 
Aarts and Lenstra 2003a). Thc neighborhoods are given by a neighborhood 
function N : C -+ P(C) mapping the set of solutions C into the power set 
of C.  For each solution s E C, N defines a set N(s) of neighboring solutions s'. 
N ( s )  is callcd the neighborhood of s, and ncighboring solutions s' E N ( s )  are 
referred to as neighbors of s.  

A neighborhood function N can be represented by its (directed) neighbor- 
hood graph G with node set C .  Two nodes s and s' are linked by an arc (s, s') 
in G precisely if s' is a neighbor of s ,  where it may happen that s' is a ncighbor 
of s but not vice versa. Local search can be rcgarded as a directed walk in 
neighborhood graph G. Graph G is called weakly optimally connected if frorn 
any node s of G, there is a dircctcd path from s to some optimal solution s*. If 

is wcakly optimally connected, an optimal solution s* can be reached frorn 
any initial solution just by iteratively moving from solutions s to appropriate 
ncighboring solutions s'. Obviously, G is wcakly optimally connected if it is 
strongly connected. 

In this section we review neighborhoods for resourcc allocation problems 
with locally regular or locally concave objective functions f that have been 
proposed by Neuniann et al. (2003a). We first deal with thc case of locally 
concave objcctive functions and thcn explain how to adapt the neighborhood 
to locally regular objective functions. Recall that cach quasistable schedule S 
can be represented by a spanning tree G = (V, EG, hG) of its schcdulc network 
N(B(S)) such that S is the unique solution to the system of linear equations 
So = 0 and S, - S, = 6: ( ( i , j )  E EG). That is why wc idcntify the set of 
solutions C with thc set ESt of all spanning trees of schedule networks N(I9) 
whcre I9 E SZ'P is some schedule-induced prcorder in sct V. 

Thc starting point for constructing a neighborhood function Pt on set CSt 
is the observation that first, two spanning trees in set CSt differing in only one 
arc always belong to either coinciding or adjacent vertices of some schedule 
polytope and that second, for any two adjacent vertices of a schedule polytope, 
there exist two corresponding spanning trccs in set CSt which differ in exactly 
one arc. Roughly speaking, we determine neighbors G' of a spanning tree G 
by removing a leaving arc (i, j) from G and adding a different entering arc 
(i', j') to G such that the resulting directed graph G' is again a tree. By 
deleting arc (i, j), G dccomposes into two subtrees with node sets C > (0) 
and C' = V\C.  Let S and S' be the quasistable schedules that are represcntcd 
by spanning trecs G and GI, rcspectively. Obviously, S(, = S,,, for all h E C 
and Sk = Sh + a for all h E C' or S(, = Sh - a for all h E C' and some 
stcpsize a > 0. In other words, when moving from S to S' we uniformly shift 
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all activities h of C' by some a 2 0 until a new inequality Sj, - Sit > 6:;, 
with i' E C', j' E C or i' E C, j' E C' becomes active. Arc ( i ' , j l )  may 
be a temporal arc or a preccdcnce arc. Similarly to the steepest descent and 
flattest ascent methods discussed in Section 3.2, stcpsize a may be equal to  0 
and thus S' = S if S is a degenerate vertex of its schedule polytope ST(O(S)). 

Now recall that wc refcr to (g, h) as a forward arc of G if g is the predecessor 
of h on the (undirected) path from O to h in G, and as a backward arc of G, 
otherwise. If leaving arc (i, j) is a forward arc of G, then i E C and j E C', 
and if (i, j) is a backward arc of G, thcn i E C' and j E C.  For what follows 
we associate a direction z with leaving arc (i ,  j) with zf, = 0 for all 1~ E C and 
zh = 1 for all h E C' if (i, j )  is a forward arc and z,, = -1 for all h E C' if 
(i, j )  is a backward arc. Let (g, h) be ail arc in somc schedulc nctwork. We say 
that set C' is shifted along arc (g, h) if zf, - zg = 1. If zr, - zV = -1, we spcak 
of a shij? against arc (g, h). Clearly, a shift of C' against lcaving arc ( i , j )  
is only meaningful if (i, j )  is a precedence arc. In that case, the precedence 
relationship bctwccn activities i and j is deleted when passing from S to 
neighboring schedule S'. Symmetrically, a shift along an entering temporal 
arc is not possible. If we shift C' along leaving arc (i, j), then S' = S + uz,  
and for a shift against lcaving arc (i, j )  we havc S' = S - uz. Before we 
describe neighborhood function W t  in more detail, we consider the four cases 
that rnay occur when shifting set C'. For illustration, we consider thc spanning 
tree G and the corresponding Gantt chart displayed on the top of Figurc 4.2, 
where for simplicity we have omitted the arc weights. We assunle that the 
underlying project has one renewable resource and that the rcal activities 
i = 1 , 2 , 3  are unrelated and can bc started at  the project beginning. Thus, 
all arcs (g, h) E EG are precedence arcs. 

(a) We shift C' along leaving arc ( i , j )  and against entering arc (i', j '). This 
means that the schedule-induced preorder remains unchanged whcn pass- 
ing from S to S', i.e., Q(S1) = B(S), or, in other words, S' E SF(Q(S)) .  
This case is shown in Figure 4.2a1 where (i, j )  = ( 0 , l )  and (i', j') = (4,O). 
In the resulting spanning tree GI, the activities h E C' shifted arc drawn 
in bold. 

(b) We shift C' along leaving arc ( 2 ,  j) and along entering preccdcnce arc 
(i', j'). This means that thc schedule-induced preorder is augmented when 
passing from S to S' # S ,  i.e., Q(S1) > Q(S).  This case is shown in 
Figure 4.2b, where (i ,  j) = (1,3) and (i', j ') = (2 ,3 ) .  

(c) We shift C' against leaving precedence arc (i, j) and against entering arc 
( 2 ,  j'). This means that the schedule-induced preordcr is reduced when 
passing from S to S' # S, i.e., 0(S1) c B(S). Such a shift is always opposite 
to  a shift augmenting the schcdulc-induced preorder (case (b)). Th'  IS casc 
is shown in Figurc 4.2c, where (i, j) = (1,3) and (i', j') = (0,3).  

(d) We shift C' against leaving prccedcncc arc (2 ,  j) and along entering prece- 
dencc arc (i1,j '). This mcans that Q(S1) 2 Q(S) and B(S1) @ B(S) if S' # S .  
This case is shown in Figure 4.2d, where (i ,  j) = (1,2) and (i',jl) = (2,3). 



4.& 

J 

. Local Search 

3 
1 1 2 _ 

117 

Fig. 4.2. Cases occurring when shifting set C : (a) shift along leaving and against 
entering arc; (b) shift along leaving and along entering arc; (c) shift against leaving 
and against entering arc; (d) shift against leaving and along entering arc 

In all four cases, the resulting schedule S' either coincides with S (which 
may happen when 5 is a degenerate vertex of its schedule polytope) or S' is 
a vertex adjacent to S in the closure of equal-order set S^{9{S'')) of some 
schedule S'\ In cases (a) and (b), S and S' are adjacent vertices of the closure 
oiSf{9{S)). In cases (a) and (c), S and S' are adjacent vertices of the closure 
of Sf{6{S')). In case (d), S and S' are adjacent vertices of the closure of 
S^{0{S'')) with S'' := i ( 5 + S'). 

A neighbor G^ e J\f^^{G) can be determined in two steps. First, we delete 
an arc (z, j ) from G. Then, we shift set C until a temporal or precedence con­
straint corresponding to some arc {i\j') becomes active. If (i, j ) is a temporal 
arc, C can only be shifted along (i, j ) . C can be shifted along or against 
(z,j) if (i,i) is a precedence arc. Finally, we add arc (i', j ' ) to G and obtain 
spanning tree G'. Since G contains n-hl arcs (i, j ) , which all may leave G, and 
because we may shift either along or against (i, j ) , the size of neighborhood 
J\r'\G) isoforder C)(n). 

Next, we define a neighborhood function A/*̂ * on the set S^^ C E^^ of 
spanning outtrees G of schedule networks A (̂̂ ) where 0 G SXV. Those span-
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ning outtrees represent minimal points of schedulc polytopes ST(Q).  A tree G 
is an outtree with root node 0 precisely if all arcs (g, h) E EG are forward 
arcs. Hence, to obtain a spanning outtree G' E Cot from a spanning outtrcc 
G E Cot such that G and Gt differ in cxactly one arc, the leaving arc (i, j) 
must be replaced by an entering arc (it, j') f (i, j) such that Gt is a tree and 
(it, j') is a forward arc in Gt. Clearly, both conditions are satisfied prccisely if 
j' = j .  Since (i, j )  is a forward arc in G, in addition wc have zj E (0 , l ) .  This 
implies that if we shift along leaving arc (i, j ) ,  we necessarily shift along eriter- 
ing precedence arc (it ,  j ) ,  and if we shift against leaving precedence arc (i, j), 
we necessarily shift against entering arc (it, j) (see Figures 4.2b and 4 . 2 ~ ) .  We 
obtain a neighbor G' E C 0 b f  G as follows. An arc (i, j) can be chosen to 
be the leaving arc if the first constraint that becomes active when shifting 
set C' corresponds to an arc (it ,  j) with terminal node j .  After the selection of 
an appropriate leaving arc (i ,  j) we proceed analogously as for neighborhood 
function Wt .  We first dclctc ( i , j )  from G, then shift set C' until the con- 
straint corresponding to cntcring arc (it ,  j )  becomes active, and finally add 
arc (it, j) to G. The size of neighborhood Not(G)  is again of order O(n) .  

Proposition 4.3 (Neumann et al. 2 0 0 3 ~ ) .  The neighborhood graphs GSt 
and Got of (a) neighborhood function Wt  and (b) neighborhood function Not 
are strongly connected. 

Proof. 

(a) Clearly, each spanning outtree G representing the earliest schedulc ES 
can be reached from any other spanning tree G E CSt by performing a 
sequence of (lcft-)shifts along a backward lcaving arc or against a forward 
leaving arc. This proves GSt to be weakly connected. Moreover, each shift 
of type (a), (b), (c), or (d) transforming some spanning tree G into a 
different neighboring spanning tree G' is reversible because the opposite 
shift is of type (a), (c), (b), or (d), rcspectively. Consequently, any two 
adjacent nodes in G5t are linked by a pair of oppositely dircctcd arcs, 
i.e., GSt is symmetric (see, e.g., Bang-Jenser~ and Gutin 2002, Scct. 1.6). 
From thc weak connectivity and the symmetry of GSt  it follows that GSt 
is strongly connected. 

(b) Got is the subgraph of GSt that is induced by set Cot and thus Got is 
symmetric as well. The weak connectivity of Got follows from the fact 
that the spanning outtrees representing schedule ES can be obtained from 
any outtree G E Cot by successively shifting against leaving prccedcncc 
arcs (z , j ) .  0 

4.3 Additional Notes and References 

Locally regular and locally concavc objective functions have essentially been 
studied in the context of resource levelling problems, where one strives at 
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smoothing the utihzation of renewable resources over time. Resource level-
hng problems have been investigated since the very beginning of algorithmic 
project planning in the early 1960s. An overview of different problem set­
tings and solution procedures can be found in Zimmermann (2001a), Ch. 5, 
and Kimms (2001a), Sect. 11.3. Resource levelling procedures for the case 
of general temporal constraints have first been proposed by Brinkmann and 
Neumann (1996), who have devised simple priority-rule methods where the 
activities are scheduled one after the other according to a quasi-topological 
ordering -< of the nodes in project network A .̂ Strict order -< arises from arc 
set E by deleting all arcs with nonpositive weight (i.e., the maximum time 
lags) and taking the transitive hull of the resulting relation. An activity h 
becomes eligible for scheduling as soon as all its predecessors i with respect 
to strict order -< have been processed, i.e., Pred^{h) C C. Among the eligible 
activities /i, an activity j is selected by using a priority rule and j is scheduled 
at a minimizer t of additional-cost function /^ on set [ESj^LSj] Pi Z. Since 
/^ is evaluated on set [ESj^LSj] n Z by complete enumeration, the heuristic 
shows a pseudo-polynomial time complexity. 

Neumann and Zimmermann (19996, 2000) have streamlined this ap­
proach in different respects. First, instead of scanning all integral times 
t G [ESj^LSj]^ only the relevant tentative start times t from decision set Vj 
are investigated (see Section 4.1). Second, the concept of core loading pro­
files rl (see Subsection 1.2.4) is used to anticipate (a part of) the unavoidable 
resource usage by activities h G V^ \C not yet scheduled. In doing so, dead­
locks where Vj = 0 can more likely be avoided when resource constraints 
have to be taken into account. The definition of additional-cost function f^ is 
based on the core loading profiles, which means that the cost ffit) of starting 
activity j at time t G Vj arises from comparing the costs associated with the 
core loading profiles before and after putting Sj := t. A third improvement 
on Brinkmann and Neumann's procedure is the use of diS'erent unscheduling 
techniques invoked when no feasible start time can be assigned to activity j 
(for details see Section 4.1). 

Neumann and Zimmermann (2000) have also proposed a tabu search proce­
dure for resource levelling, which in principle is as follows (for an introduction 
to tabu search we refer to Glover and Laguna 1997 or Hertz et al. 2003). Given 
some time-feasible schedule 5, a neighboring schedule S" is constructed by se­
lecting a real activity j G V^ such that rk{S^ Sj) > AmaxQ<^^^^rfc(5, t), where 
A with 0 < A < 1 is a control parameter. Then activity j is shifted behind or in 
front of some activity 2 G F" , i.e., Sj = Si-\-pi ov Sj = Si —pj. Subsequently, 
the time-feasibility of resulting schedule S' is restored. The move from S to 
S' is only accepted if rk{S',t) < rk{S,t) for some resource k G 7?.̂  and some 
"peak time" t G argmaxQ<^ ,̂<^^rfc(5, t '). In general, the schedules S iterated 
are not resource-feasible. That is why they are evaluated on the basis of a cost 
function including a penalty term for violations of the resource constraints. 
The penalty term is similar to that used by Schwindt (20006) in the local 
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search algorithm for the earliness-tardiness problem with renewable resources 
(see Subsection 3.2.5). 

For solving the resource investment problem, Niibel (1999) has proposed a 
branch-and-bound algorithm that (implicitly) makes use of the property that 
the total procurement cost represents a preorder-decreasing objective function 
(see Subsection 2.3.3). The principle of this branch-and-bound algorithm is to 
introduce fictitious resource capacities that are stcpwisc dccrcased at certain 
cnunlcration nodcs. Starting with thc carlicst schedule S = ES at thc root 
node, the capacity Rk of some resource k E R P  is put to maxo<tlz 7.k(S, t )  - 1 
and a new schedule S is sought with rk (S , t )  < Rk for a l l  < t < 2 by 
using the enumeration scheme for regular objectivc functions given by Al- 
gorithm 3.1. Reduction of fictitious rcsourcc capacities and cornputation of 
quasiactivc schedulcs with lower maximum rcsource requirements are reiter- 
ated until no feasible schedule with < 2 can bc found any more. Each 
timc a new feasiblc schedule has bccn found, one branches over the resource k 
whose capacity is dccreascd next. 

Based on an enumeration scheme by Patterson et al. (1989) for project 
scheduling subject to precedence and rcncwablc-rcsource constraints, Ncu- 
mann and Zimmermann (2000) have developed a timc-bascd branch-and- 
bound procedure. The algorithm is capable of solving arbitrary resource allo- 
cation problems for which an optimal schedule can be chosen to be integer- 
valued. The latter condition is obviously always satisfied if the ohjectivc func- 
tion is locally regular or locally concave because any quasistable schedule is 
integral. The nodes of the enumeration trcc are associated with partial sched- 
ules (Si)iEc satisfying the temporal and rcsourcc constraints. Starting with 
C = (0) and So = 0, at cach lcvel an activity j from set V \ C with minimum 
total float TF j  = LSj - ESj is added to C. For each integral start timc t 
in the current time window [ES,, LSj] of j ,  a corresponding child node with 
Sj = t is generated and the time windows of the activities h E V \ C not yet 
scheduled are updated. Leaves of the enumeration node corrcspond to feasible, 
not neccssarily quasistablc schedulcs. 

Next, we discuss the results of an experimental performancc analysis for 
the time-constrained resource investment and total squared utilization cost 
problems. We comparc a tabu search implementation of Neurnanri et al.'s 
local search principle discussed in Scction 4.2 to some of the alternative so- 
lution procedures. The test set has been created using projcct generator Pro- 
Gcn/max and contains 90 projects with 500 activities and 1, 3, or 5 rcsources 
each. For all algorithms a timc limit of 100 scconds has been imposed, which 
refers to a Pentium personal computer with 200 MHz clock pulse. The results 
were communicated by Zimmermann (2001b). 

Table 4.1 shows the results obtained for the resource investment  prob- 
lem, where besides the trcc-based tabu search proccdure ("TS") we have 
tested truncated versions (filtcred bcam scarcli, "FBS") of the branch-and- 
bound algorithms of Niibcl (1999) and Ncumann and Zimmermann (2000). 
Since tight lowcr bounds for large rcsourcc levelling problems are not avail- 
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ablc, we give the mean dcviation Abeht from thc objective function value of 
a best solution found by the three procedures. pbest denotes the percentagc 
of instances for which thc respective method has found a best solution (the 
values sum to more than 100% because for some instanccs, a best solution 
was found by more than onc proccdurc). 

Table 4.1. Performance of algorithms for the resource investment problem 

Algorithm n b e s t  Pbest 

Niibel (1999) FBS 23 % 6.7% 

Neumann and Zirnrnerrriarin (2000) FBS 18 % 11.1 % 

Neumann et al. ( 2 0 0 3 ~ )  TS 3 %  90.0% 

The data from Table 4.1 suggest that the tabu search heuristic provides 
markedly bettcr schedules on the average than the truncated exact algorithms. 
For 81 out of the 90 projects, thc trcc-bascd approach yields a best solution. 
In addition, thc mcan deviation from the best solution found is considerably 
smaller than for the two other algorithms. 

The results for thc total squared resource utilization cost prob- 
lem arc given in Table 4.2. The tree-based tabu search procedure has been 
compared to the priority-rule ( " P R )  and tabu search ("TS") methods by 
Neumann and Zimmermann (2000). The priority-rule method has bccn run 
as a multi-pass procedure with ten priority rules. Again, we give the mean de- 
viation from the best objective function valuc and thc percentage pbeSt 
of bcst solutions found. 

Table 4.2. Performance of algorithms for the total squared utilization cost problem 

Algorithm n b e s t  Pbest  

Neumarm and Zimniermann (2000) PR 10 % 4.4 % 

Neumann and Zimrnermanri (2000) TS 3 % 43.3 % 

Neumann et al. ( 2 0 0 3 ~ )  TS 1% 68.9% 

Not surprisingly, the schedule-improvement procedures outperform the 
priority-rule method. As for thc rcsource investrnent problem, the tree-based 
approach again shows the best performancc among the tested algorithms. 
Compared to thc tabu search of Neumann and Zimmcrmann (2000), the fa- 
vorable bchavior is probably due to the small size of the neighborhoods to be 
cxplored and the littlc time needed for niovirig from one schedule to another. 


