4

Constructive Algorithms

1f the objective function to be minimized i locally regidar or locally concave,
the relaxation of the regsonrce constraints does not vield a tractable problem
in general, This, the relaxation-based approach from Chapter 3 no longer
proves useful. For solving resource allocation preblemx with locally regular
or locally concave objective fnction f, we have to explicitly constroct the
schedides from an appropriate set that containg an optimal schedule # the
problem is solvable. We refer to algorithms that proceed i such a way as
comstructive algorithms. The serial schedide-gencration scheme for minimiz
ing regular objective functions s an example of a consdruclive algorithm. in
thix chapter we develop constructive algorithmy that are based on the second
basic representation of the set & of all feasible schednles as a nnion of digiolnt
eqnal-preorder sets {recall that the term equal-preorder set may also desig-
uate an equal-order sct). As we have geen in Snbsections 2.1.1 and 2.1.2, the
set of all minimal peluts or vertices of equal-preorder sety colncides with the
st of all minimal polnty or vertices, respectively, of schedule polytopes. In
Snbsection 2.2.2 we have introduced the notion of goasiactive and (nasistable
schednles designating those feasible schedules which represent minimal points
or vertives, respeciively, of their schedule polytopes. The analysis i Subsec-
tion 2.3.2 lias shown that for S 5 8, the set of all guasiactive schedules always
contains some optimal sehedule if the ebjective imation § uuder study is lo-
cally regular. Likewise, the set of all quasistable schedules always contajus an
optimal schedule if [s locally voncave provided that § # @&

Since we again consider the general case where both renewable and cimu-
lative resources are present, we consider relations g set V' oof all {real and
fietitions) activities, Under our assnmption that the real activities use the re
newable resources and that the events deplete and replenish the cinmilative
resonrees, precedence relationships need only be defined among real activi-
ties and among events of the project. More formally, instead of cousidering

we may restrict onrselves to schednle-indnced relations arising from the union
of the respective schedule-induced strict order in set V? and the correspond-

108 4. Constructive Algorithms

ing reflexive prearder in set V. Since the graund sets V* and V* of thase
two prearders are disiolnt, the union of hoth preorders Is again transitive and
this represents a preorder iy gronnd set V = V* U Ve, Aeccordingly, for given
schiednie § we define the schedule-induced preorder 10 be

H8) == {(i, 7 € (VI x VI UV x VO 18, =2 8 4 i}

We natice that preorder #(5) is neither irveflexive nor reflexive.

Now recall that any quasiactive schiedule can be reprosented ag a spanning
anttree G = {V, Eq) of its scliedule network N{#{5)) raated at node 8, where
each arc {¢, 7} of & belongs ta ane temparal constraint §; — 5; = §;; or one
precedence canstraint 55 2 5; 4 p; that s active at 5 (¢f. Praposition 2.28).
Similarly, any quasistahle schedule can be assigned to a spanning free G of
it schedule network, Tn addition, we assign the weiglis 6::, = di‘}a‘a‘) to the
ares {1, 4} € Eg. The active temporal and precedence canstraints can then he
written i1 the farm

8y~ 8 =85 ((.5) € Bg)

The constructive algorithimg are based an generating such spanning outtrees
and spanning trees (. The carrespanding schodule 5 s ahtained from G hy
computing the unique salitian ta the system af Hnear equations S = 0 and
8 = iﬁ’.g—}f?g ({i, 71 € BEa), which cay he achieved iy Hnear time. By construct-
ing a spanuing onbtree ar spamung tree ¢ we nerfarm iwa cansecutive tasks
simultaneoushy: first, finding a feasible schednle-nxduced prearder in set V
and secand, computing some apprapriate vertex {the mininal point f ¢ s an
onttree) of the carresponding relatian polytope,

Resaurce allacatian prabierns with lacally regnlar or loeally concave alsw-
jective fanctions, regardless of cantaining explicit resource canstraimts ar
nat, are mmch harder ta solve ta aptimality an the average than resource-
constrained praject schediding prablems where same regular ar canvexifiable
abjective fimctian is ta be minimized. That is why in the present chapter
we are concerned with heuristic procedures. In Sectian 4.1 we first discuss
a generic schedule-generation scheme preducing one quastactive or one qua~
gistable schedule. This schedule-goneration schewse has beeu proposed by New-
mann et al. (2000) and goes back to priority-rule heuristics for resource level-
ling prablems that bave been devised by Neumann and Zimmermann (19995,
20003, The schedule-generation scheme pravides an initial guasiactive or qua-
sistahle schedule, fram which we may snbsequently move stepwise towards dif-
foremt quasiactive or quasistable schednles by using an iterative impraveiment
pracedire. In Seetion 4.2 we then deal with tree-hased neighbarlicod functions
presented in Newmann eb al, (2003¢). Neighborhaod functions canstitute the
essential hullding black of lacal searcly algarithrs such as Bl climbing, tabn
search, simndated annealing, or threshold accepting {for an overview of differ-
catt lacal search techniques, see Aarts and Lenstra 20035). In particndar, we
shaw that the prapased neighbarhoads allaw lacal scarch algoritlnns ta reach
optimal schedules independently of the initial schedule chosen, Section 4.3 is

4.1, Schedule-Ceneration Scheme 109

devoted to additional notes on alternative selution procedures and an exper-
nnental performance analysis of the methods discussed.

4.1 Schedule-Generation Scheme

The schedule-generation scheme for constructing gquagistable schedules ex-
pards the node set C of a subtree G of some schedule network by one node §
i each iteration untl] <7 == V. The algorithm starts with C' = {0} and itera-
tively links the activities 7 € V' \ € not yet scheduled with activities ¢ € C.
Iee this way, the start thmes S; of all activities ¢ € C are fixed, They are
uniguely determined by the recarsion Sy = Cand 5 = S, + 5;” if{h, i} e Fe
or 5, w5, - é_fi it (iR € Fg (i € C, i £ 0), where h is the predecessor
of node ¢ on the {undirected) path from node O to node ¢ It G For a given
pair {{, 7 with ¢ € €, j € V \ €, there are four slternatives of connecting
nodes ¢ and 7. First, we may either introduce a forward arc (4, §) or a back-
ward aere (1,1}, Now assume that we have chosen forward are {4, 7). Then {4, 7)
may be weighted by (}‘C' w by i (4, 7) is comlained in project network N or
weigliled by 55;- sy if d” < p;. In the frst case, we speak of a temporal are,
and in the second case, the are is referred to ag a precedence are. Likewise,
backward are {7,4) way be weighted by 55; = d;; or by bjt =p; lfiandj
are events, then §; +p; = 5 — p; = 5 and thus the backward precedence are
may be omitted. The arcs have to be choson in accordance with the temporal
constraints, Let

FS(' 1= max[lS ,mcu\{S i} and LS’ g 111i11[LSj,1_1(1:ié}(&-_ ------ dii)l

denote the earliost and latest start times of activity § given that activifies
i & {7 start at times 5;. The schedule S gencrated is time-feasible precisely if
at any iteration ¥ holds that ESJ(-: < 8+ 5f; < LS;?' if a forward arve (4,7} is
selected and ES7 < 5 — 55; < .L,Sf if a backward are (§,17) is chosen.
From the viewpoint of implementation, it is expedient to allow the sched-
uling of activities 7 at their earliest or latest start times LS or L&G even if
the corresponding temporal are connects activity § with an «uiwztv % that is
not scheduled either. We then need not check wlhether or not activity 7 can
already be linked to some activity ¢ € €, while tlie set of schedules which
can be generated is not alfected by tlus modification. The reason for this is
that the same {ree G could have beent constructed by the original rmethod just
by proeessing the activities 7 in a different order. Figuratively speaking, the
modification means that the divected graph G whose node set C s iteratively
expanded may now be uncommected unless € = V. Nevertheless, the property
that the start times of all scheduled activities ¢ € € are kuown as scon as
they arc added to & is preserved.
Algorii‘,hm 4.1 ‘%31{}“?8 an imp%emantatﬁon of the proculur? for the case whorc

110 4. Constructive Algorithms

By = —oc, B = oo for all & € RY. As we have mentioned in Subsection 2.3.2,
this assuption s genevally met i practice when dealing with resouree level-
ling problems, whoere oz‘rIy revewable resources arve takew into acconnt and the
resource capacities may be cheosen according to the respoctive vequiirements,
How to modify the schedule-generation scheme i the presonce of vesonree
constraints will be explained below. For stmplicity, we assine that Sy £
Afer the compntation of the earliest and latest sehedvdes ES and LS, at each
teration some activity 7 € V1 O not yet sehednled 18 selected. Then, the de-
ciston set D of tentative start thmes ¢ for § is deterndned. The conditions en
start thirmes § ensure that the resultivg schedule 8 i {thne-Yeasible and that
precedence relationships are only established between activities of the same
type {Le., swmong real activities and among events; recall our discussion abont
the proper defindtion of schedule-induced preor der A5}, Finally, some t € T
is selected to be the start time of 7 and the thme windows [ES), LS,] for tho
activities i € V' (" are updated. These steps are reiterated until all activities
have heen scheduled. The resuliing free G is a spanning tree of all relation
networks N{g) for which p contains the precedence aves added and tlms in
particular a spanning tree of schedule network N{8(5)). The time complexity
of Algovithm 4.7 equals O{wmn), which ig the thue required for caleulating the
tnitial earliest and latest schedules.

Algoritlim 4.1, Schedule-generation scheme for locally coneave objective functions

Ipput: A project withent resource constrains.
Outpuis A quasistable schedule S,

initiakze set of scheduled activitles £ = {0} and set Sp 1w {3
complite earliest and latest schedules £8 and L5;
while O # V do {*not all activities 7 € V schednled %)
select an activity g V \ &,
if & V® then put V7 e V) else put V7 i V9
add 7o O and set Dy e {8, LS
for all i € V' N C with B8 < 8+ pi < LS; do add 5; 4+ to Dy
& i V= V" then
& for allie V' N with ES; <9 —p; < LS do add S — py to Py
HE select some time £ € D) and set S5 1= & (xschednle 7 at time £)
for all & ¢ VN C do (s update eazhesi. and latest start times+)
set B8y i man(fSy, 85 +dp) and LS = mn(LSn, 85— day)
return 5

The following propoesition (cf. Nemnan et al. 2000) establishes the com-
pleteness of the schedule-gencration scheyne. This means that, ab least in the-
ory, a resource allocation problem with locally concave objective lunction can
he solved by a brute-force algovithm branching over the activity 1€ VN C to
be scheduled vext and the tentative start time £ € D; chosen.

4.1. Schedule-Generation Scheme 111

Proposition 4.1 (Neumann et al. 2000).

{0) Any schedule S generaled by using Algorithen 4.1 5 quasistoble.
(L) Any quosistable schedule 5 ¢ Q88 can be generated by using Algo-
reithn 4.1

Proof.

{n} Since the earlicst and latest start thines are updated in the conrse of the al-
gorithm, schedude S is (time-)easible if at each iteration D; C [FS;, LS;].
It follows from the definition of decision set 5 that we only need to show
that FS; < L8;. Now assume that we have scheduled some activity §7
and hefore the npdate of the earliest and latest start thnes it holds that
ES, < LS, {orall A € V\ C. Then Sy £ LSy € LS, — dpp and
Sy > ESy > BESy+dyp for all h € VAC and in partiestar 8p +dp; < LS,
and Sy —dyye 2 IS0 Conseqnently, FS; > LS; after the npdate would
imply Sy +dyr; = Sp—djyr b, dpy+dyy > 0, which contradicts Sy # 6.
Thns, 5 is feasible. The gquasistableness of S now follows from Proposi-
tion 2.28h.

{b} We consider some quasistable schedule § and show how to generate
S by using Algorithm 4.1, Let G be a spanning tree of schedule net-
work N{#{S}). The existence of such a spanning tree is gnaranteed by
Proposition 2.28b. Since (7 15 a tree and the procedure starts with € = {0},
at each iteration there I8 some activity 7 € V' \ € whose predecessor ¢ on
the path from pode to node § in G has alrcady been scheduled, We may
then conmect 7 with 1 by selecting ¢ = 5, + 55; e S =5+ 5;:} and
e & — é‘; € Dy, otherwise, Thus, when € =V, the schedule generated
coincides with schedule S, i

Now recall that any quasiactive schednle S can be associated with a span-
uing onttree G oof s schedule network N{#{8)) with root node 8. Such a
spaning outiree is chiained if each activity 7 to be scheduled i Hnked with
some aclivity + € ' by a forward arc {4, 7). Accordingly, a schedule-generation
schemne for quasiactive schedules is readily obtained from Algorithmm 4.1 by
imtializing decision set D; with {E8;} mstead of {ES;, LS;} and deleting
lines 8 and 9. The statements of Proposition 4.1 with “guasistable” and Q&8
replaced by “gnasiactive” and @48 mmediately earry over to shis wodifica-
tion of Algorithm 4.1

TFFor what folows, we drop our assunption of infinite renewable-resonres
capacities. To take acconnt of renewable-resouree constraints, in lne 10 of Al-
gorithm 4.1 we only sclect feastble starf times £ from decision set Ty such that
the residual resource enpacities suffice o execute activity § in time interval
[t, ¢4+ py], Le,

Stk <R (heRP LT <t4py) (4.1

e my e
S B b

112 4. Constructive Algorithms

Of course, inequality (4.1} only needs {o be evaluated for real activities
7€ Ve By using a support-polnt representation of the resource demand over
time that results from the real activities ¢ € OV schednled, testing {4.1) for
given 1 € Dy takes QR |n) thne. I thues € in decision set D, are iterated in
inereasing order, the amortized time complexity for elminating all infeasible
start thnes from D; is Olnlog n -+ IR}, By keeping a sorted list of all start
and completion times of scheduled activities { € C N V?, the anortized time
complexity for checking (4.1} is decreased to Of|R?|n) per iteration. Thus,
the time complexity of Algorithy 4.7 includiug the test of ineqnality (4.1}
Olmn + |RP|n*).

It wmay happen that no fentative start tine { € 1 I resource-feasible,
which means that the current partial schedule {5 oo cannot be extended to a
feasible sehedule § € 8. In that ease, cither the schedule generation Is stopped
or an unschednling step is performed. Different unscheduling techniques are
known from literatnre. The method by Franck (19499}, Ch. 4, tailored to the
case of regnlar objective functions, has been sketched 1 Subsection 8.1.4. Fur-
sher unschediding procedures have been devised by Neumann and Zinnmer-
many {19985, 2000} {see also Zinvmermann 2001a, Sect. 3.2, and Neumann
et al. 2003, Sect. 3.7, where those activities 1 € C are unschiednled wlhosc
start at a differext. time frees eapacity for processing activity 7. Alternatively,
one may also generate a time-feasible schednle § using Algorithm 4.1 frst
and then resolve resonrce conflicts by left- or right-shifting certain activities.
Tlhis approach corresponds to schedulevepair methods deseribed by Neumann
and Zimmermann {2000}, We finally notice that the praof of Propoesition 4.1
remains valid for the case of renewable-resonrce consiraints, which means that
evenn withont unscheduling, any quasistable sehedule may still be generated
using Algorithim 4.1 with reduced decision sets Dy

For certain chioices of tentalive start times ¢ € D; one obtains specific Lypes
of schedules. If ab cach iteration we select £ = min D; and 1o unscheduling step
is performned, thie resulting schedule is active because eacly activity is scheduled
at its earliest feasible start time. Likewise, by always choosing £ == minD; or
1 = maxP; we obtain a stable schedule, The followiug example, however,
shows that die to the presence of maximnnm time lags, not all active oy stable
schedules can be generated in this way.

Erxample 4.2. We cousider a project with one renewable resonree of capacity
R w1 and four real activities ¢ = 1,2, 3, 4 with durations p; = 1 and resonree
requirements v; == 1L {3 = 1,...,4). The project network N s depicted iy
Fignre 4.1a. Clearly, there Is precisely one feasible schedule 5w (0,1, 2,3,4,5),
whilel, as a consequence, is active and stable. Schedule 5 is Hustrated by
the Ganit chart shown in Figure 4.1h, where cach real activity ¢+ € V¢ is
represented as a box of length py and height »; over the time axis from 8
10 Cx;

The start thimes of activities €, 1, 4, and 5 are fixed by the prescribed time
lags because the corresponding nodes form a cyele of length zero in N. If in

4.1, Schedule-Generation Scheme 113

1 |
B

® o8
T 7
—6
(b}
[1 II 2 3 II 4 | 0.0
1 s 5 4 5 g

Fig. 4.1. Incomplsteness of schedule-generation scheme for active or stable sched-
ules: (a) project network N: (b) Cantt chart for unique feasible schedule §

the course of the algorithm, activity 2 is scheduled before activity 3, we obtain
min Dy = 0 and max Dy > 3. Symmetrically, if activity 3 is scheduled before
activity 2, we have minD3 < 2 and max?; = 5. Hence, the unique feasible
schedule S cannot be generated if solely scheduling at earliest or latest feasible
start times is considered.

We obtain the schedule-generation scheme of the priority-rule methods
for resource levelling proposed by Neumann and Zimmermann (19995, 2000)
if start time £ € Dy is always chosen to be the greatest minimizer of an
additional-cost function fj' on Dy, j.e., t = maxargming cp, F§(t'). For given
' € Dj, f#(t') is the increase in the objective function value if activity j is
scheduled at time ¢’ given partial schedule (S;);ec, where we put rp; := 0 for
all activities & € V' \ C not yet scheduled and all £ € R?. Similarly to Exam-
ple 4.2 it can be shown that the restriction to locally optimal tentative start
times ¢ € argminyep, f7(¢') generally implies that the schedule-generation
scheme is no longer complete, which means that one may miss the optimum
even if all sequernces in which activitics 7 arc scheduled are enumerated.

In the case where the availability of cumulalive resources is limited as
well, the feasibility of the generated schedule can no longer be ensured by
iterating partial schedules which observe the resource constraints. The reason
for this is that a partial schedule leading to a shortage or a surplus in some
cumulative resource may be extended to a feasible schedule. Nevertheless,
we may still exclude certain tentative start times from further consideration
by computing, for given partial schedule, lower and upper bounds on the
inventory in cumulative resources.

Let (S,)iec be the partial schedunle under consideration and assume that
we want to test whether event j € V*\C' can be scheduled at time §; =1 € D,
By D’ we denote the distance matrix for the expanded project network N’
where for cach k € CU {7} we add the two arcs (0,h) and (h, 0) weighted by

114 4. Constructive dlgorithms

dop, = Sp, and dpg = 5, to preject network N, The set 83 & &7 of all time-
feasible schednles belonging to project network N' coincides with the set of all
schedules thal can be obtained by extending (Sulrecuyyy to & time-feasible
schednle. I for all schedules § € 84, the mventory level at time 85 either falls
below the safety stock or exceeds the storage capacily, i.e.,

7i{S, 8;) < By or (8.8} > Ry for some k& RY (4.2)
then cvenit § cannot be sclieduled ot time ¢ == 5; becanse 84 NS = §. In
this case, tentative start time £ can be deleted from dedision set Dy (4.2)
holds true for any schedule S € 8 precisely if for some cumnlative resonree
k€ Rf, the maximum mventory maXses, ri(5,5;) at time 8 s less than
safety stock Hy or the MBI HIVeRtory THligess, Tk (&, 54} at time 8 ex-
cceds storage capacity . The problems of computing the maxinmm and
mininm inveniories nave been addressed in Subsection 2.1.2, where we liave
been concerned witl checking the feasibility of & given relation p in set V©,
in the latter context, we Lave shown that maxhmizing or minimizing ri{, 9]
on a relation polvtope Sr{p) can be stated as o binary program with totally
unimodnlar coeflicient matrix, the doal of whose conthimons relaxation is a
minimum-flow problem {(see (2.2) and (2.4}, We obtain anslogons formula-
tions of onr present problems if we choose reflexive preorder ¢ in {2.2) to
he the preorder 8 = @{D") indiced by distance matrix IV, Since solving a
minimmm-flow problem takes O(n®) thme, the conmputational effort for festing
the feasibility of a tentative start time £ € Dy is O{|RY|n*). Hence, the thne
complexity of the variant of Algoritlun 4.1 coping with renewable-resource
and cnnmlative-resonrce constraings is O{JR?In? + {R7In?).

Alternatively, resonree constraints can be faken into acconnt by conbining
the relaxation-based and constrnetive approaches into a two-phase method, Tn
phase 1, we deterniine a feasible relation g in set V. In phase 2, wo generate
a vertex of relation polytope Sr{p) € 8 {i.e., a quasistable schedule) by using
a vartant of Algorith 4.1 where the original project network N is replaced
with refation network N{p). A feasible relation g in set ¥V can be generated
nsing a modification of the emnmeration scheme given by Algorithin 3.3, In
the modified version, forbidden gets F are given by antichains U and nnions

A{S,) for minhmizers § on relation polytopes Sp{p). For given relation p,
those sets U can be determined by solving the mindmmn-flow problemns dis-
cussed in Subscctions 2.1.1 and 2.1.2 for the restrictions of p to sets V® and V=,
respectively. The sohutions te the dual problems, Le., the maxionnn (s, £-cuts
it the respective flow networks, then provide the activity sets U sought (for
details we refer to Section 5.2, wlere we shall use a similar technique for con-
priting forbidden active sets when sequence-dependent changeover tines arise
hetween the execention of activities that are excented at different locations). If
no set U is forbidden any louger, we have obtained » feasible relation g = p.

4.2, Local Search 115

4.2 Local Search

Tlhe schednle constructed by nsing the schedule-generation scheme may be -
proved by performing a local search i the sob QAS of all quasiactive scliedules
if obiective Fmetion f is Jocally regnlar or in the set @58 of all quasistable
sehedudes 3 f s locally concave. Starting with sone initial solution, local
search algorithms try to find better solutions by exploring neighborhoods {cf.
Aarts and Lenstta 2003a). The neighborhoods are given by a neighborhood
function N 2 X — P(X} mapping the sct of solutions X into the power set
of 3. For each solution s € 2, A defines a set A'{s) of neighboring solutions s,
N{s} is ealled the neighborhood of s, and neighboring solutions 8” € AV{s} are
reforred to as neighbors of s.

A neighborhood function A can be represented by its {directed} neighbor-
hood graph G with node set K. Two nedes s and ¢ are Hnked by an arc {5, 8)
in G precisely if ¢ 18 a peighbor of s, where it may happen thiat 8 is a neighbor
of 5 but not vice versa, Local search can be regarded as a directed walk in
neiglihorhood graph G, Graph ¢ s called weakly optimally connccted i from
any node s of G, there is a directed path from 3 to some optimal solution s*. If
G s weakly opthually commected, an optimal sohition ¢ ean be reached from
any initial solution just by tteratively moving from solntions s to appropriate
nciglthoring solutions ¢, Obvionsly, ¢ is weakly optimally connected if 0
strongly connected,

in this seetion we review neighborhoods for resource slloeation problems
withi lecally regular or lecally concave objective lunctions f that have been
proposed by Nemuann ef al. {2008a). We first deal with the case of locally
concave objeetive Tunections and then explain how to adapt the neighborhood
to Jocally regudar ebjective functions. Reeall that each quasistable schedule §
can he represented by a spanuing tree G = {V, Eq, 6%) of its schednle network
N{#(8)) such that § is the unique solution to the system of lnear equations
Se=Gand §; -8 = 55: {{(#,7} € Eg). That s why we identify the set of
solutions X with the set X% of all spanuning trees of schedule networks N{#)
where # € STP is soime schedule-indnced preorder in ser V,

The starting point for construeting a neighborhood funetion M on set 2%
is the observation that first, two spanuning trees in set 3% differing in only one
arc abways belong to either colnciding or adjacent vertices of some schedule
polytope and that second, for sy two adjacent vertices of a schedule polytope,
there exist two corresponding spanning trees i set X which differ in exactly
one arc. Roughly speaking, we determine neighbors G' of a spanning tree G
by removing a leaving arc {1, §) from G and adding a different entering arc
(', 3"} to & sueh that the resulting divected graph & s again a tree. By
deleting are {4, 73, G decomposes nto fwo subtrees with node sets C D {4}
and €7 = VA\CL Let § and 57 be the quasistable schedules that are vepresented
by spaniing trees G and &7, respectively. Obviously, S, = 5, for all h e T
and 8, = Sp+oforall h e ¢ or 8] = &, — o for all £ € ¢ and some
stepsize o > 0. In other words, when moving from S to 8 we uniformly shift

118 4. Constructive Algorithms

Wiiiz i C”'__ i’ {L Cor ¢ C C, i'e C’ ’()0(01;105 petive, Au ;} I}}a_\r
beoa tcz‘rzpora.i aIC Or f pz*ecedezz(’.o arc, Sindlanly to the steepest (i(“»(‘(‘nt and
Hattest ascent methods discussed in Section 3.2, stepsize o may be equal to 0
and thus 87 = 5 if 5 is a degencrate vertex of its schedule polytope Sp{8{S)).

Now recall that we refer to (g, b) ag a forward arc of G if g is the predecessor
of h on the {undirected) path from € to b in &, and as o backward arc of G,
otlerwise. If leaving arc {4, §) 8 a forward arc of G, then i € C and 5 ¢ &,
a3 if (?’ j} is a i}ack\\fard arc of G’ then i € C " amd j e I*‘or what foifow

e 1 for aif he (’ if (: J) isa forwmd arc and zp, == ~1 for cIH fz, e Chif
(3._ J1is a backward arc. Let {g, h) be an arc in some schedule notwork, We say
that sel C7 is shifted along avc (g, k) if 25 = 2y w1 IF 25 — 2, = — 1, we spoak

of a shift against are {g. h). Clearly, a shift of C" against leaving are {4, 7}
is only meaningfnl if {7, 7} s a precedence are. In that case, the precedence
refationship betwoeen activities ¢ and § is deleted wlen passing from 8 to
neighboring schedule 8. Symumetrically, a shift along an entering temporg
are is not possible. If we shift € along leaving are {4, 4), then §7 = 8 + o2,
and for a shift against leaving arc {4, 7} we have §' = 5 — o2z, Before we
describe neighborhood funetion A in more detail, we consider the four cases
that may occur when shifting set &7, For }liustmhmn we consider the spanning
tree G oand the corresponding Gangt chart dzspiayed on the top of Figure 4.2,
where for simplicity we have omitted the gre weights, We sssumne that the
piderlying project has one rencewable resource and that the rcal achivities

=, 2,3 are mrelated and can be started at the project beginning. Thus,
all arcs {g¢, h) € E¢ are precedence ares.

{a} We shift ¢ along leaving src {4, 7} and agalnst entoring arc {', 7', This
TEANS tha’f the %ci‘ze(Inle-indnced pz'eoz‘dez' }‘Oi'ﬂai}'}"-i mmha,zzg,ed wi‘zo;z pas‘%

{‘hzs case is sizown in F}gzzzo ‘Za whezg {i,4y = (0 1) and {(i'.3 } {4, {}j
b the resniting spanning tree &7, the activities h € €7 shifted are drawn
i bold.

{(by We shift ¢ along leaving arc {{,7) and along emtering precedence are
{#', #'1. This weans that the schedule-induced preorder is sugmented wher
passing {rom § to S # 5, Le, 6(8) o 0(8). This case s shown iy
Figire 4.2b, where (4,7} = {1,3) and {&', 7Y = {2,3).

(¢} We shift €7 against leaving precedence are {4,) and against entering arc
(¢, 4"). This means that the schedude-induced preorder is reduced when
passing from Sto 8" £ §, Le., 8{8) C #{9). Such a shift is always opposite
to a shifs angmenting the schedule-indnced preorder {case (b)), This case
is ghown i Pigure 4.2¢, where (4,7 = {1,383} and (¢, 7'} = {0,3).

{dy We shift C7 against leaving precedence are {4, §) and along ertering preco-
dence are (€7, 47, This mreans that 9{‘;’} LS and 88 ¢ 9{8‘) 8 £ 8,
This case is ai.}.owzz 1 Figure 4.2d, where (4, §) = (1,2) and {¢, ') = {2,3).

4.2, Local Search 117

C’\‘
2]

O-1K_ @ i
Y Tz

i rit
{a)
) | 3
(b) -Q"‘
- 2
@©

@

Fig. 4.2. Cases occurring when shifting set C': {a) shift along leaving and against
entcring arc; (b) shift along leaving and along entering are: (¢} shift against leaving
and against entering arc; (d) shift against leaving and along entering arc

In all four cases, the resulting schedule 57 either coincides with S (which
may happen when S is a degenerate vertex of its schedule polytope) or §' is
a vertex adjacent to § in the closure of equal-order set S7(#(5")) of some
‘schedule 5", In cases (a) and (b}, S and 5’ are adjacent vertices of the closure
of S7(A(S)). In cases (a) and (c), S and §' are adjacent vertices of the closure
of SF(8(5")). In case (d), S and 5" are adjacent vertices of the closure of
SF(0(8")) with 8" := 1(S+ 5').

A neighbor G’ € N**(G) can be determined in two steps. First, we delcte
an arc (¢,) from G. Then, we shift set C” until a temporal or pILCLdCIlCL con-
straint corresponding to some arc (', ') becomes active. If (i, 7) is a temporal
arc, C’ can only be shifted along (z, 7). €' can be shifted along or against
(z,7) if (4,7) is a precedence are. Finally, we add arc (¢, ') to G and obtain
spanning tree G. Since G contains n+1 ares (1, 7), which all may leave ¢, and
because we may shift either along or against (4, 7}, the size of neighborhood
NG is of order O(n).

Next, we define a ncighborhood function A’ on the set X C X5t of
spanning outtrees G of schedule networks N(f) where @ € SIP. Those span-

118 4. Constructive Algorithms

ning ontirees represent minkmal points of schedule polytopes S {0), A tree ¢4
is an outfree with root node 0 precisely if all arcs {g, h) € FEy are forward
arcs. Mence, to obtain a spanning anttree &7 € 3° from a spanning onttrec
G e X gneh that G and ¢ differ in t"Xa(‘tI‘f one are, the leaving are (4, §)
st be replaced by an eutering arc (¢,) 9 {3, 7) such that & is a tree and
{(#,3'V is a forward arc in 7. Clearly, bot.fz eonditions are satisfled precisely if
J s f. Since (7,7} is a forward are in G, in addition we have z; € {0,1}. This
iraplies that if we 'hiff along leaving arc {4, 7}, we necessarily shift along enter-
ing precedence arve (¢,), and if we shift against leaving precedence are (4,7},
wo neccssarily shift a.g_,mum. entering are (¢, 7} {see Figures 4.2b and 4.2¢}, We
obtain a neighbor G7 € 29 of G as {ollows, An are {¢, 7} can be chesen to
be the leaving arc if the first constraint that becomes active when shifting
set O corresponds to an ave {4, 53 with terminal node 5. After the selection of
an appropriate leaving are {4, §} we proceed anmmlogonshy as for neighborhood
funetion A We first delete {4, 4) from G, then shift set €7 until the con-
straint corresponding to entering are {¢, 7)) beeomes active, and finally add
arc (i, 7} to G. The size of neigliborhood N{GY is again of order Ofn).

Proposition 4.3 {Neumann et al. 2003a). The neighborhood graphs G#
and G of {a) neighborhood function N and (b} neighborhood function A/
are strongly connccted.

Proof.

{a) Clearly, eacli spanuing ontiree G representing the earliest schedule ES
can be reached from any other spaming tree G & 1% by performing a
sequence of (left-)slnfts along & backward leaving arc or against a forward
leaving are. This proves §*F to be weakly conmected. Moreover, each shift
of type (a), {b), {c}, or {d) transforming some spannig tree & nto a
different neighboring spanning tree (' is reversible beecause the opposite
slitft is of type {a}, (¢}, {b), or (d}, respectively. Consequently, auy two
adjacent nodes in % are linked by a pair of oppusitely directed arcs,
Le, G is symmotric {see, e.g., Bang-Jeusen and Gutin 2002, Scet. 1.6).
From the weak connectivity and the symmetry of G* it follows that G5
is strongly connected,

(b} G is the snbgraph of G that is induced by set 2 and thus 7 is
symmetric as well. The weak conmectivity of ¢ follows from the fact
that the spanning outtrees representing schedule F5 ean be obtained from
any oultree & € X9 hy snccessively shifting against leaving precedence
ares (4,). 1

4.3 Additional Notes and References

Locally regular and locally concave objective functions have essentially been
studied in the comext of resonrce levelling problems, where one strives af

4.8 Additional Notes and References 118

smoothing the utilization of renewable resources over time. Resource level
ling problems have been investigated sinee the very beginning of algorithmic
project planning in the early 1960s. Ag overview of different problem set-
tings and solution procedures can be found in Zimmermann {2001a}, Ch. 5,
and Kimms {20014}, Seet. 11.3. Resource levelling procedures for the case
of general temporal conustraints have first been proposed by Brinkmann and
Neumanu {1996), who have devised simple priority-rule methods where the
activities are scheduled one alter the other according to a quasi-tepelogical
ordering < of the nodes in project network N, Strict order < arises from arc
set B by deleting all ares with nonpositive weight {Le., the maximun time
lags} and taking the transitive ull of the resnlting relation. An activity h
becomes eligible for scheduling as soon as all s predecessors ¢ with respect
to strict order < have been processed, Le., Pred (R} € C. Among the eligible
activities i, an activity § is selected by using a priority ride and 7 is scheduled
at a minimizer ¢ of additional-eost function f* on set [ES;, LS;] N Z. Since
f¢ is evaluated on set [ES;, LS| N Z by eomplete enumeration, the Lenristic
shows a pseudo-polynomial tiime complexity,

Nevmanu and Zimmermann {19885, 2000} have strearnlined this ap-
proach in different respects. First, instead of seanning all integral times
t € [ES;, LS,], ouly the relevant teitative start times ¢ from decision set D
are investigated (see Section 4.1}, Second, the concept of core loading pro-
files r§ (see Subsection 1.2.4} is used to anticipate (a part of) the unavoidable
resource usage by activities h € V' \ C not yet scheduled. In doing so, dead-
locks where D; = @ ean more likely be avoided when resouree eonstraints
have to be tuken into acconnt. The definition of additional-cost {unction f7 is
based on the core loading profiles, which means that the cost ff(t) of starting
activity j at time ¢ € D; arises from comparing the costs associated with the
core loading profiles before and after putting §; 1= t. A third lmprovement
on Brivkmansn and Neumann's procedure is the use of different unscheduling
techniques invoked when no feasible start time can be assigned to activity 3
{for details see Section 4.1},

Nenmann and Zimmermann {2000} have also proposed a tebu search proce-
dure for resource levelling, which in principle is as follows {for an introduction
to tabu search we refer to Glover and Laguna 1997 or Hertz et al. 2003}, Given
somie thne-feasible schedule 5, a neighboring schedule S is constructed by se-
lecting a real activity j € V° such that »{§, ;) 2 Amax, ., .3 7:(5,t), where
Awith G < A < 1is a control paramneter. Then activity § is shifted behind or in
front of sone activity i € V©, ie., 8 = 5; + p; or 8} == & - p;. Subsequently,
the time-feasibility of resulting schedule 8’ is restored. The move from S to
S is only accepted i rp{S, 1) < 7,(5, 1) for some regource k € RP and some
“peak thme" t € argmaXy. .37 {5,1'}. In general, the schedules S Herated
are not resource-feasible. That is why they are evaluated on thie basis of a cost
function including a penalty term for violations of the resouree constraints,
The penalty term is similar to that nsed by Schwindt (20005 in the local

120 4. Constructive Algorithms

search algorithin for the earliness-tardiness problem with renewable resources
{see Subsection 3.2.5).

For solving the rescurce mvestment problem, Nitbel {19993 has proposed a
branch-and-bound algorithm that (implicitly) makes nse of the property that
the total procurement cost represents a preceder-decreasing objective hmetion
{see Snbsection 2.3.3). The principle of this branch-and-bonnd algerithm is to
izztroduce ﬁctit'iom re,som‘(x-\ capza(-itim t'hat are sl epwi‘-;e de{-remed ai {-ertaizz

nodc tbe {d}mc;ty I?;, {}f HONLE TESOUTCE fs & T’f‘ is put to }}}dx{}ﬂ,d?gb{ﬂ £ -1

,,,,,,,,,,,, < f < d by
using the (-zzzumemtzon ::(.heme ior zeg}a.zfaz oi_aje(:t.we fmz(.t-wns given hy Al
gorithm 3.1, Rednection of fictitions resomree capacities and compmtation of
guasiactive schedules with lower maxinnnn resource requirements are reiter-
ated until no feasible schedule with 5,43 < d can be fonnd any moere, Each
thne a new feasible schednle has been found, one branches over the resonree k
whose capacity is decreased nest,

Baged on an ennmeration scheme by Patterson et al. (1989) for project
schednling subject to precedence and renewable-resource constraings, Nen-
mann and Zhmmermann {2000} have developed a time-based branch-and-
bonnd procedize. The algorithm is capable of solving arbitrary resource allo-

cation problems for which an optimal schednle can be chosen to be integer-
valued. The latier condition is obviously always satisfied if the objective func-
tion is locally regnlar or loeally concave becanse any gnasistable schednle i
integral. The nodes of the ennmeration tree are associated with partial sched-
zri(m: {8 heo satisfying the temporal and resonrce constraints. Starting with
we {0} and Sg = 0, at cach level an activity 7 from set VA € with mininnm
(ai.a.f floal TF; = LS; ~ ES; is added to C. For each integral start thoe £
m the carrent time window [ES;, L5;] of 7, a corresponding child node with
5 = ¢ s generated and the thue windows of the activities A € V' \ C not yet
schednled are updated. Leaves of the emuneration node correspond to feasible,
not necessarily quasistable schednles.

Next, we discuss the results of an experimental performance analysis for
the time-constrained resonrce investinent and total squared utilization cost
problems. We compare a tabn search implementation of Neuwmann of al’s
local search principle discussed in Section 4.2 to some of the alternative so-
hition procedures, The test set bas been created using project generator Pro-
Gen/max and containg 80 projects with 500 activities and 1, 3, or 5 resources
each. For all algorithms a time nit of 100 scconds has been mzpoaef which
rofers to & Penthum personal compnter with 200 MHz clock palse. The results
were commmuicated by Zimmenmany (20016).

Table 4.1 shows the results obtained for the resource investment prob-
lem, where besides the tree-based tabu search procedire (¥TS"}) we have
tested tiuncated versions (Altered boam sesrch, “FBS”) of the branch-and-
bound algorithms of Nithel (1999} and Neumann and Zinnnermann (20001,
Sinee tight lower bounds for large resource levelling problems are not avail-

4.8 Additiona Noles and References 121

able, we give the mean deviation A from the obicdtive finction valie of
a best solition fonud by the three procedures. preyy denotes the percentage
of instances for which the respective moethod has found a best solution (the
valnes sunx g0 more than 100% because for some instances, a best solution
was fonnd by more than one procedure).

Table 4.1. Performance of algorithins for the resource investiment problom

Algorithm Abest Phone

Nitbel {1999} ¥BS 2% 8T%
Nempann and Zimmermany (20000 FBS 18% 11.1%
Nemmann et al. {2003a) TS 3% S0%

The data from Table 4.1 suggest that the tabu search henrigtic provides
markedly better schedules on the average than the trancated exact algorithing,
For 81 out of the 90 projects, the ree-based approach yvields a best solation,
In addition, the mean deviation from the best solution found is considerably
sinaller than for the two other algorithms,

The rosulis for the fotal squared resource utilization cost probe
fem are given mn Table 4.2, The tree-baged tabu scarch procedure has been
compared to the priovityernle (PR} and tabn search {7T57) nethods by
Nemmamn and Zimmermann {2000}, The priority-rule method has been rm
as a nmli-pass procedure with ten priovity yles. Again, we give the mean de-
viation Ay, from the best objective Himction valne and the percentage Prew
of best solutions found.

Table 4.2, Perforinance of algorithms for the total sgnared ntilization cost problem

Algorithm Dieet Phest

Neumann and Zimmermany (2000) PR 10% 44%
Nenmann and Zmmermann (2000078 3% 433%
Neumann et al. (2003a) TS 1% 68.9%

Not smrprisingly, the schedule-tinprovement procedores outperfonn the
priority-rale method. As for the resonrce investinent problem, the tree-hased
approach again shows the best performance among the tested algorithms.
Compared to the tabu search of Newmann and Zinonennang {2000}, the fa-
vorable behavior s probably dne fo the small size of the neighborhoods to be
explored and the little time veeded for moving from one schednle to another.

